Interim Report (CATEGORY) FACILITY FORM 602 1-82116-4 EVALUATION OF WEAR AND CONTAMINATION GENERATION OF HYDRAULIC COMPONENTS b y G. F. Lare J. N. Donis October 1964 Prepared for GEORGE C. MARSHALL SPACE FLIGHT CENTER - NASA Huntsville, Alabama Contract No. NAS 8-532 # THE FRANKLIN INSTITUTE LABORATORIES FOR RESEARCH AND DEVELOPMENT PHILADELPHIA PENNSYLVANIA PRICES SUBJECT TO CHANGE Reproduced by NATIONAL TECHNICAL INFORMATION SERVICE Sectorfield, Va. 22151 527 Interim Report I-B2116-4 ## EVALUATION OF WEAR AND CONTAMINATION GENERATION OF HYDRAULIC COMPONENTS bу R. H. Hollinger G. F. Lare J. N. Donis October 1964 #### Prepared for GEORGE C. MARSHALL SPACE FLIGHT CENTER - NASA Huntsville, Alabama Contract No. NAS 8-5332 I-B2116-4 #### 1.0 Introduction - 1.1 This report covers the work performed on Contract NAS-8-5332 during June and July of 1964. - 1.2 The results of four test series are reported. They are: - a) Tests of PV006L012 B pumps at an ASTM contamination level of 0 to 1 - b) Tests of APO5V-14 pumps at an ASTM contamination level of 5 to 6 - c) Tests of PV006L012 B pumps at an ASTM contamination level of 3 to 4 - d) Life and efficiency tests of the S-IV servo-actuator filter. - 2.0 PV006L012 B Tests, 0 to 1 Level - 2.1 This test run employed the remaining two of four PV006L012B pumps. A previous test at a 0 to 1 level had been made on this type pump and was reported in I-B2116-3. The tests were conducted with no difficulty and proved to be uneventful. - 2.2 The leakage flows for this test run are shown graphically in Graph No. 1. There was an initial increase in leakage for both test pumps as was noted in previous tests, again, presumably from clearance changes resulting from expansion. After approximately 22 hours of cycling, pump No. 2 (Serial No. MX 71945) showed a sudden increase in leakage flow after which the flow became relatively constant. At approximately 40 hours of cycling another rapid increase in leakage flow for this pump began with a resulting increase in torque (See Fig. 2), but this time showed no inclination to level off. The test for the pump was discontinued at 45 hours. The other test pump was allowed to continue cycling for a total of 55.5 hours. . I-B2116-4 (See Figure 1 for behavior and key to cycle.) Since this pump represented the third pump necessary for higher contamination level testing, together with the two pumps which had successfully completed the previous tests, and since the leakage flow was showing no change, the test was discontinued at that time. - 2.3 The contamination counts taken during the tests are shown in Table 1. Table 2 shows the counts expressed as a percentage of input manifold counts and these values are shown graphically as a function of cycling time in Graph No. 2. - 3.0 APO5V-14 Tests, 5 to 6 Level - 3.1 Three of four APO5V-14 pumps which had completed tests at a 0 to 1 level satisfactorily were selected for this test. The high level was selected intentionally in order that failure of some type would be induced during the test cycle. The pumps chosen were: | | Leakage Flow | | | | | | | | |----------|-----------------|----------|-----------|--|--|--|--|--| | Pump No. | End of 1st Test | Start of | this Test | | | | | | | 80060 | .240 gpm | .260 | gpm | | | | | | | 80018 | .195 gpm | .160 | gpm | | | | | | | 80062 | .185 gpm | .160 | gpm | | | | | | 3.2 The test was conducted in the same manner as the low contamination level tests. Maintaining the high contamination level proved to be very difficult since the AC dust contaminant was continually reduced in size from the greater than 100 micron and 50 to 100 micron size ranges. These size ranges were replenished every four hours. It was noted however that depletion of these ranges occurred after only 0.5 hours of cycling. Dust was added to the sump during the "off" portion of the test cycle with the sump circulating system operating. Table I PARTICLE COUNTS | | 0 hrs. | 9h 22m | 17h 32m | 25h 37m | 32h 32m | 40h 37m | <u> </u> | |--|---|--|----------------------------------|-------------------------------------|-----------------------------------|--|----------------------| | 10-25 M | | | | | | | | | Pump No. 1 Pump No. 1 Drn. Pump No. 2 Pump No. 2 Drn. Manifold | 2,504
3,365
1601
1627
2,573 | 1908
2,956
2,010
2,803
2,215 | 2,641
2,894
2,504
2,504 | 1156
1175
877
2,206
984 | 996
1141
911
971
1039 | 707
983
8 <i>6</i> 2
1089
9 7 3 | 1218
2181
1090 | | 25-50 M | | | | | | | | | Pump No. 1 Pump No. 1 Drn. Pump No. 2 Pump No. 2 Drn. Manifold | 180
311
255
121
177 | 81
338
76
207
123 | 248
358
189
356
194 | 110
139
87
168
72 | 228
210
169
177
183 | 44
62
51
120
58 | 41
161
86 | | 50-100M | | | | | | | | | Pump No. 1 Pump No. 1 Drn. Pump No. 2 Pump No. 2 Drn. Manifold | 22
24
12
11
12 | 7
49
15
18
16 | 27
45
21
29
14 | 11
12
14
34
16 | 25
13
20
21 | 8
10
11
17
13 | 12
23 | | > 100 <u>u</u> | | | | | | | | | Pump No. 1 Pump No. 1 Drn. Pump No. 2 Pump No. 2 Drn. | 4
5
3
1 | 1
16
1
3
4 | 7
8
4
9
3 | 4
6
1 | 2 2 2 3 3 | 4
3
4
5 | 5 | | Manifold | 4 | 4 | 3 | 4 3 | 3 | 5 | 5 | B2116 TABLE II COUNTS AS % OF MANIFOLD COUNT | | 0 hrs | 9h 22m | 17h 32m | 25h 37m | 32h 32m | 40h 37m | <u>49h 2m</u> | |---|------------------------------|--------------------------------|--|-----------------------------------|--------------------------------|--------------------------------|---------------| | 10-25 1 | | | | | | | | | Pump No. 1 Pump No. 1 Drn. Pump No. 2 Pump No. 2 Drn. | 97
131
62
63 | 84
133
91
127 | 99
109
78
94 | 117
119
89
224 | 96
110
88
93 | 73
101
89
112 | 112
200 | | 25-50 M | | | | | | | | | Pump No. 1 Pump No. 1 Drn. Pump No. 2 Pump No. 2 Drn. | 102
176
144
68 | 66
275
62
168 | 128
184
97
183 | 153
193
1 2 1
233 | 125
115
9 2
97 | 76
107
88
207 | 48
187 | | 50-100 | | | | | | | | | Pump No. 1 Pump No. 1 Drn. Pump No. 2 Pump No. 2 Drn. | 183
200
100
92 | կկ
306
9կ
11 2 | 193
3 21
150
207 | 69
75
87
212 | 119
86
62
95 | 61
77
85
131 | 75
144 | | >100,4 | • | | | | | | | | Pump No. 1 Pump No. 1 Drn. Pump No. 2 Pump No. 2 Drn. | 100
125
75
250 | 25
400
25
73 | 2 33
2 67
1 33
300 | 133
200
333
133 | 66
66
66
100 | 80
60
80
1 2 0 | 100
60 | I-B2116-4 - 3.3 In the course of the tests, all pumps exhibited continuous leakage increases to values in excess of .5 gpm. The leakage flows are plotted as a function of cycling time in Graph No. 3. Of the three pumps undergoing test, however, only pump number one (80060) was taken off test for reasons of increased leakage alone. - 3.4 Pumps numbers 2 and 3 (serial numbers 80018 and 80062 respectively) showed leakage increases, but, in addition, showed erratic torque traces. The torque trace for pump No. 2 just before shut-off is shown in Figure 3. (Compare with normal trace shown in I-B2116-3, pg. 4, Figure 2.) No. 3 pump was developing the same characteristics just before shut-off as shown in Figure 4. Pump No. 1 appeared to show an erratic trace but to a considerably lesser degree and was allowed to run until the leakage was high. The torque trace for No. 1 pump is shown in Figure 5. - 3.5 After the test, the pumps were disassembled and inspected. Considerable amounts of very fine bronze particles and fine AC dust were found in the pump cases, but no visible signs of scoring were observed for pistons, piston barrels, compensators, or bearings. The pump parts were ultrasonically cleaned in Freon and the pumps were then reassembled. A short retest of one hour's duration confirmed the high leakage flows but showed no evidence of the erratic torques. It would appear, since the torque variations were high frequency, that the variations result from the presence of contaminant under the piston shoes or in the bearings. Removal of the contaminant by cleaning does away with the variation. - 3.6 Particle counts obtained during the test are listed in Table 3. The counts are expressed as percentages of inlet manifold counts in Table 4 and these values are shown graphically as a function of time in Graph No. 4. - 12 - TABLE 3 PARTICLE COUNTS | | 3 hrs. | 7 hrs. | 11 hrs. | 16 hrs. | |--|--|--|--------------------------------------|----------------------------| | 10-25,4 | | | | | | Pump No. 1 Pump No. 1 Drn. Pump No. 2 Pump No. 2 Drn. Pump No. 3 Pump No. 3 Pump No. 3 Drn. Manifold | 36,806
26,667
24,452
30,672
24,999
34,591
25,642 | 46,370
48,330
44,644
38,936
47,712
37,620
55,550 | 56,146
46,945
65,007
67,308 | 49,756
54,016
57,595 | | 25-50µ | | | | | | Pump No. 1 Pump No. 1 Drn. Pump No. 2 Pump No. 2 Drn. Pump No. 3 Pump No. 3 Pump No. 3 Drn. Manifold | 1095
1099
1135
1030
1252
911
807 | 1082
776
715
483
920
426
877 | 928
696
971
1465 | 715
536
5 2 8 | | سر100_ | | | | | | Pump No. 1 Pump No. 1 Drn. Pump No. 2 Pump No. 2 Drn. Pump No. 3 Pump No. 3 Pump No. 3 Drn. Manifold | 121
92
96
144
93
106
68 | 47
38
27
22
45
30
32 | 36
47
44
144
63 | 11
12
14 | | > 100/4 | | | | | | Pump No. 1 Pump No. 1 Drn. Pump No. 2 Pump No. 2 Drn. Pump No. 3 Pump No. 3 Pump No. 3 Drn. Manifold | 11
8
15
16
19
11 | 11
7
8
3
12
9 | 18
9
17
28 | 5
4
11 | TABLE 4 COUNTS AS % OF MANIFOLD COUNT | | 3 hrs. | 7 hrs. | 11 hrs. | 16 hrs. | |---|--|--------------------------------------|------------------------|------------| | 10-25u | | ı | | | | Pump No. 1 Pump No. 1 Pump No. 2 Pump No. 2 Pump No. 3 Pump No. 3 Pump No. 3 Drn. | 144
104
95
120
117
135 | 83
87
80
70
86
68 | 97
81
113
117 | 86
94 | | 25-50 | | | | | | Pump No. 1 Pump No. 1 Drn. Pump No. 2 Pump No. 2 Drn. Pump No. 3 Pump No. 3 Drn. | 136
136
140
128
155
112 | 123
88
82
55
105
49 | 98
74
103
155 | 135
102 | | 50-100x | | | | | | Pump No. 1 Pump No. 1 Drn. Pump No. 2 Pump No. 2 Drn. Pump No. 3 Pump No. 3 Drn. | 178
135
141
212
137
156 | 147
119
84
69
141
94 | 57
75
70
229 | 79
86 | | >100m | | | | | | Pump No. 1 Pump No. 1 Drn. Pump No. 2 Pump No. 2 Drn. Pump No. 3 Pump No. 3 Drn. | 79
57
107
114
136
79 | 138
88
100
38
150
112 | 82
41
77
127 | 45
36 | I-B2116-4 - 3.7 In the course of the tests, difficulty was encountered with one of the 16-120A servo valves. After about 9 hours of testing the servo actuator on which the valve was mounted showed very sluggish response. The valve was removed and subsequent testing in Astrionics Laboratory at MSFC confirmed that the servo-valve was initially sluggish in operation, but the performance improved as the valve was operated in a clean system. Evidently the difficulty resulted from silting, since great numbers of particles below 10 microns dimension were in the system as a consequence of the grinding action of the pumps on the A.C. dust. - 4.0 PV006L012B Tests, 3 to 4 Level - 4.1 Three PV006L012 pumps which had been satisfactory during tests at a 0 to 1 level were used for these tests. The 3 to 4 test level was selected as an intermediate level. The experience gained during other tests in the series seemed to indicate that this level could be expected to cause difficulty within the time of test. The pumps used were: | | Leakage Flow | | | | | | | |----------|-----------------|--------------------|---|--|--|--|--| | Pump No. | End of 1st Test | Start of This Test | ÷ | | | | | | MX7-4069 | .170 gpm | .120 gpm | | | | | | | MX7-4054 | .210 gpm | .120 gpm | | | | | | | MX7-4061 | .210 gpm | .130 gpm | | | | | | ^{*}Note: 100°F starting temperature 4.2 At the start of the test both No. 1 and No. 2 pump exhibited erratic torque traces, but after several cycles the traces became normal. After approximately four hours of cycling, the torque for No. 2 pump again became suddenly erratic and leakage jumped from .265 gpm I-B2116-4 to .690 gpm. The pump was taken off test immediately. The erratic trace for the pump is shown in Figure 6. Tests were discontinued on No. 1 and No. 3 pumps when the leakage flows reached .340 gpm and .430 gpm respectively. This was done to prevent further damage to the pumps. The torque traces for these pumps just prior to shut off are shown in Figures 7 and 8 respectively and the leakage flows are shown plotted as a function of cycling time in Graph No. 5. No. 2 pump will be inspected to determine the cause of failure. 4.3 Table 5 shows the contamination counts made in the course of the test. Table 6 shows the counts as the percentage of inlet manifold counts and these values are plotted as a function of time in Graph No. 6. #### 5.0 Filter Tests - 5.1 Life and efficiency tests were carried out on the S-IV servo-actuator filters. Two filters (S/N7 and S/N14) were used for these tests. The filters were cleaned before each subsequent use. The tests consisted of placing the filter in a housing exactly simulating the actuator housing. (Figure 9.) The unit was constructed according to Moog Servocontrols Inc. print No. 033-13178. The change in pressure drop across the filter and housing was observed while known quantities of AC Course Test Dust were added to the system at 15 minute intervals. The system flow was one gallon per minute, the maximum rated flow of the filters, and the allowable increase in ΔP was arbitrarily selected as 25 psi. - 5.2 Graph No. 7 shows the time required to attain the 25 psi ΔP increase as a function of the AC dust addition rate in grams per 15 minutes. An add rate of .005 grams per 15 minutes corresponds fairly closely to a maintained ASTM No. 2 level. The time value at this point (by extrapolation) is approximately four hours. Table 5 PARTICLE COUNTS | | 0 hrs | 5 hrs | 8 hrs | 14½ hrs | 22 hrs | 30 hrs | |---|--|----------------------------|----------------------------|----------------------------|--|----------------------------| | 10-25 L | | | | | | | | Pump No. 1 Pump No. 1 Drn. Pump No. 2 Pump No. 2 Drn. | 23,680
25,900
22,666 | 29,479
37,743 | 32,716
32,035 | 20,877
26,156 | 36,672
28,882 | 24,282
24,407 | | Pump No. 3 Pump No. 3 Drn. Manifold | 22,066
18,744
30,586
24,367
16,784 | 40,214
34,024
32,376 | 29,308
29,905
28,391 | 24,537
30,672
29,308 | 3 2, 631
33 , 22 8
36 , 550 | 13,887
14,824
24,708 | | مر 25-25 | | | | | | | | Pump No. 1 Pump No. 1 Drn. Pump No. 2 | 1,705
721
1,090
833 | 471
860 | 492
570 | 443
690 | 579
417 | 604
528 | | Pump No. 2 Drn. Pump No. 3 Pump No. 3 Drn. Manifold | 11,67
917
1,380 | 1,516
608
664 | 594
630
579 | 545
741
579 | 511
8 <i>6</i> 9
988 | 231
291
681 | | 50-100 <u>u</u> | | | | | | | | Pump No. 1
Pump No. 1 Drn.
Pump No. 2 | 9 2
86
88 | 21
87 | 3 2
26 | 20
26 | 31
26 | 24
21 | | Pump No. 2 Drn. Pump No. 3 Pump No. 3 Drn. Manifold | 56
118
72
130 | 88
38
48 | 22
24
23 | 2 8 `
38
49 | 20
48
64 | 23
27
27 | | >100 u | | | | | | | | Pump No. 1
Pump No. 1 Drn.
Pump No. 2 | 11
18
10 | 3
14 | 6
7 | 5 | 8
5 | 8
5 | | Pump No. 2 Drn. Pump No. 3 Pump No. 3 Drn. Manifold | 13
15
14
15 | 16
6
9 | 6
9
8 | 5
10
12 | 5
11
17 | 6
7
7 | Table 6 | 10-25 <u>u</u> | COUN
O hrs | TS AS OF
5 hrs | MANIFOLD
8 hrs | COUNT
<u>141 hrs</u> | <u>22 hrs</u> | <u>30 hrs</u> | |---|-------------------|-------------------|-------------------|------------------------------------|------------------|---------------| | Pump No. 1 Pump No. 1 Drn. Pump No. 2 | 141
154
131 | 91
117 | 115
113 | 71
89 | 100
79 | 98
99 | | Pump No. 2 Drn. Pump No. 3 Pump No. 3 Drn. Manifold | 112
182
145 | 124
105 | 103
105 | 84
105 | 89
91 | 56
60 | | 25-50 M | | | | | | | | Pump No. 1 Pump No. 1 Drn. Pump No. 2 | 124
52
79 | 71
130 | 137
98 | 77
119 | 59
4 2 | 89
78 | | Pump No. 2 Drn. Pump No. 3 Pump No. 3 Drn. Manifold | 60
85
66 | 228
9 2 | 103
109 | 94
128 | 5 2
88 | 34
43 | | 50-100,4 | | | | | | | | Pump No. 1 Pump No. 1 Drn. Pump No. 2 | 71
66
68 | 51
181 | 139
113 | 41
53 | 148
141 | 89
78 | | Pump No. 2 Drn. Pump No. 3 Pump No. 3 Drn. Manifold | 44
91
55 | 183
79 | 96
104 | 57
79 | 31
75 | 85
100 | | >100 <u>µ</u> | | | | | | | | Pump No. 1
Pump No. 1 Drn.
Pump No. 2 | 73
120
66 | 33
155 | 75
88 | 42
75 | 47
29 | 114
71 | | Pump No. 2 Drn. Pump No. 3 Pump No. 3 Drn. Manifold | 87
100
93 | 178
67 | 75
113 | կ2
83 | 2 9
58 | 86
100 | Graph 7 Table 7 | \$ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | Sta | Start | | | % Part | % Particles Passed | | | |---|--|-----------------------------------|--|-----------------------------------|--------------------------------------|------------------------------|--|--| | | Upstream | Downstream | End
Upstream | Downstream | Start | End End | | | | s/N 7 | | | | | | | | | | 10-25M
25-50M
50-100M
> 100M | 40470
3442
478 | 31438
2266
292
37 | 50580
12880
1320
361 | 25500
2362
179
45 | 77.7
65.8
61.1
74.0 | 46.5
18.3
13.6
12.5 | | | | S/N 7 | | | | | | | | | | 10-25 M
25-50 M
50-100 M
> 100 M | 24878
1584
202
24 | 14800
11 2 1
56
9 | 177 2 1
1496
1 2 4
2 6 | 105 <i>6</i> 4
707
58
12 | 59.4
70.7
27.7
37.5 | 59.6
47.2
46.7
46.2 | | | | S/N 7 | | | | | | | | | | 10-25 M
25-50 M
50-100 M
> 100 M | 27349
23 <i>6</i> 8
196
34 | 16273
973
52
11 | 24196
1635
134
35 | 16188
875
47
19 | 59.5
41.0
26.5
32.3 | 66.9
53.5
35.0
54.2 | | | | s/N 14 | | | | | | | | | | 10-25M
25-50M
50-100M
> 100M | 17806
1593
248
46 | 11928
485
61
21 | 31950
2982
554
76 | 17040
621
90
12 | 66.9
30.4
2 4.5
45.6 | 53.3
20.8
16.2
15.7 | | | | s/N 14 | | | | | | | | | | 10-25 M
25-50 M
50-100 M
> 100 M | 14313
1 2 09
95
3 2 | 937 2
604
43
16 | 111 <i>6</i> 1
1005
107
18 | 7156
664
38
7 | 65.4
49.9
46.2
50.0 | 64.1
66.0
35.5
38.8 | | | I-B2116-4 - 5.3 Table 7 shows the percentage of particles impinging on the filter which apparently passed through the filter. The upstream and downstream counts were taken at the beginning of the test run and again when the change in ΔP reached 25 psi. - 6.0 The final data analysis for the pump tests is in progress. Tests of the S-IV system will be completed. R. H. Hollinger Project Engineer Approved by Edmund Thelen, Manager Colloids & Polymers Laboratory M. M. Labes, Technical Director Chemistry Division